2012年4月29日日曜日

2つの行列の2つの積から元の行列を逆算する



大学への数学Ⅲ&Cの勉強
行列と連立1次方程式

【解説】
(1)対角行列Tと行列の積が交換可能な行列は対角行列です。
(2)行列Aと行列Bの積ABとBAとは、同じ固有値を共有する行列です。

(3)また、行列式が0では無い行列で、その固有値の値が重解を持たない行列Aは、その固有値毎に固有ベクトルを計算して、
 その固有ベクトルを並べた行列Ptkを用いて以下の式で計算することで、対角化した行列Cukに変換できます。
-1ussttk=Cuk   ←Asttk=Psuuk
また、行列Pを用いてそのようにお互いに変換できる行列同士は、同じ固有値を持ちます。
これらの原理を利用して、以下の問題を解くことができます。

【問題】
行列Aと行列Bがあるとき、
行列の積AB=CとBA=Dとが与えられた場合に、元の行列AとBを求める問題を考えます。
この問題では、行列は全て2行2列の行列であるものとします。

(条件1)この行列AとBは、その行列式が0では無く逆行列が存在するものとします。

 この行列の積AB=CとBA=Dは以下のように、行列A(あるいは行列B)を用いて互いに変換できます。
行列AB=Cと行列BA=Dは、行列Aを用いて互いに変換できるので、同じ固有値を持ちます。
 行列AB=Cと行列BA=Dは固有値が共通であるので、この行列AB=Cと行列BA=Dのバラエティを記述するパラメータの数は、行列Aの4つのパラメータと行列Bの4つのパラメータの合計の8よりも2つパラメータが減って、6つのパラメータでCとDとのあらゆる場合が記述できます。
 パラメータが減ってしまっているので、行列CとDだけでは情報が不足しているので、それだけでは、行列AとBを完全に再現することはできません。行列CとDのみからでは、行列AとBがパラメータの自由度2で不定になります。
 以下では、その不定性があっても良いものとして、行列AとBを可能な限り逆算してみます。

以下の行列式を計算することで、行列AB=Cと行列BA=Dとが共有する固有値と、その固有値を持つ対角行列Tを計算することができます。
そして、以下のように、その固有値を持つ対角行列Tを行列Cに変換する行列Pを計算、対角行列Tを行列Dに変換する行列Qを計算します。
以下で、式4から行列Aを与える式6を計算し、式5から行列Aを与える式7を計算し、式6と式7を連立して行列Aを消去する計算をします。
ここで、行列Q-1BP=Vとします。
この行列Vと対角行列Tとは、その積が交換可能な関係があります。
対角行列Tと積が交換可能な行列Vは対角行列になります。
 上式8のように、行列Bが対角行列Vを用いてあらわせます。

同様にして、 式4から行列Bを与える式9を計算し、式5から行列Bを与える式10を計算し、式9と式10を連立して行列Bを消去する計算をします。
ここで、行列P-1AQ=Wとします。
この行列Wと対角行列Tとは、その積が交換可能な関係があります。
対角行列Tと積が交換可能な行列Wは対角行列になります。
そして、以下の式11のように、行列Aが対角行列Wを用いてあらわせます。
 この式8と式11を用いて行列の積AB=Cを計算すると、以下の関係式12を得ます。
すなわち、式12のように、対角行列Tは対角行列WとVの積です。また、対角行列同士の積は交換可能です。
ここで、行列の積BA=Dを計算すると、式5の関係が満足されています。
 対角行列VとWには、それ以上の制限条件がありません。
すなわち、任意の対角行列Vを自由に定めて、式12を満足するように対角行列Wを定めれば、それだけで、AB=Cを与える式4と、BA=Dを与える式5が満足されます。

(解答)任意な対角行列Vと、式12を満足する対角行列Wを用いて、式11で行列Aが与えられ、式8で行列Bが与えられる。

【検算】
 任意の対角行列Vを用いて行列AとBが与えられるということが、本当に間違いなく成り立っているかを確かめるために、以下の検算をします。

検算のために、行列AとBが以下の場合を考える。
 この場合に、行列AB=CとBA=Dの固有値を以下の様に計算すると、行列CとDの固有値が同じであることが確認できます。
これで対角行列Tが定まりました。
次に、行列AB=Cを対角行列Tに変換する行列Pを計算します。
次に、行列BA=Dを対角行列Tに変換する行列Qを計算します。
次に、対角行列WとVを自由に変えて(ただし式12を満足させて)、それにより定まるAとBが、どれも同じ行列AB=CとBA=Dを与えるかどうかを確認します。

(第1の場合)
先ず、対角行列WとVを以下のように定めて行列AとBを計算します。
 この行列AとBは、元の行列AとBとは異なる。
次に、この行列AとBの積AB=CとBA=Dを計算する。
 行列AB=CとBA=Dは元どおりになった。

(第2の場合)
次に、対角行列WとVを以下のように定めて行列AとBを計算します。
 この行列AとBは元の行列と同じ行列が得られた。

(第3の場合)
次に、対角行列WとVを以下のように定めて行列AとBを計算します。
 この行列AとBは、元の行列AとBとは異なる。
次に、この行列AとBの積AB=CとBA=Dを計算する。
 行列AB=CとBA=Dは元どおりになった。

以上で、両者の積が対角行列Tになる任意の対角行列VとWを設定することで、異なる行列AとBの組が得られ、そのいずれの行列AとBの組も、同じ行列の積AB=CとBA=Dを与えることが確かめられた。


2012年4月25日水曜日

2つの対角行列とある行列の積の交換の定理

 
 
大学への数学Ⅲ&Cの勉強
行列と連立1次方程式


以下のように、1つ目の対角行列Bと、ある行列Aの積の行列と、積が交換された、その行列Aと2つ目の対角行列Cの積の行列が等しいという条件が与えられているとする。
この式を計算すると以下の式になる。
この場合に、これらの行列の要素が以下の様に特定の値に制限される。
この関係を、仮に、
「2つの対角行列とある行列の積の交換の定理」
と名づける。
 行列の問題を解く際に、この定理の条件を与える式が得られたら、その式の解は、以下のように解けることを覚えておくと便利だと思う。

(解の解説)
上の行列の方程式から、以下の関係が得られる。
この解1以外の解については、以下のように、式1から式4により変数が等しくされる関係を図に書いて考える。
(解8)行列Aが0行列であって、対角行列BとCは任意の行列であるという自明な解もある。

 この問題では、以上のように、8個の場合分けされた解が得られる。
 これらの解の特徴は、行列Aが自由に設定できる場合は(解1)の場合だけで、その条件は、行列B=C=単位行列の定数倍のときである。
 行列B=C=単位行列の定数倍という条件が無い場合には、行列Aの少なくとも2つの要素が0になる。

(補足)
この問題の一部として、以下の場合が重要です。
すなわち、以下のように、単位行列の定数倍以外の対角行列Tと交換可能な行列Aを考える。
TA=AT
この行列の解は、上の解7であって、次の式のように行列Aも対角行列になります。
 このように、単位行列の倍数以外の対角行列と積が交換可能な行列は、対角行列のみです。
 このことは、積が交換可能な行列は、その固有ベクトル(の方向)が同じであるという原理に結びついています。単位行列の倍数以外の対角行列の固有ベクトルは(1,0)と(0,1)だからです。
 ちなみに、2行2列の行列に限っては、行列Tと交換可能な行列は、単位行列Eを用いて、cT+dEであらわせます。Tが対角行列の場合、cT+dEは対角行列になるから、対角行列Tと交換可能な行列は対角行列であると言えます。しかし、その話は2行2列の行列に限って成り立つ話です。一方、交換可能な行列は固有ベクトルが同じという原理は、n行n列の行列全てで成り立ちます。