ページ

2012年7月10日火曜日

バウムクーヘン積分と2重積分

大学への数学Ⅲ&Cの勉強
積分の応用

【解説】
 バウムクーヘン積分により、立体の体積を計算する積分技術が教えられています。
 しかし、インターネットで検索すると、その手法で問題を解くと減点されると注意がされているようです。

例えば、以下のようにバウムクーヘン積分の式が与えられることを示す問題が東大の入試問題に出されたことがあるので、バウムクーヘン積分を当たり前の式として使ってはいけないと言う意見がありました。

【問題】
f(x)=πxsin(πx)とする。
y=f(x)のグラフの0≦x≦1の部分とx軸とで囲まれた図形をy軸のまわりに回転させてできる立体の体積Vは

で与えられることを示し、この値を求めよ。
(問題おわり)

 バウムクーヘン積分に言及して問題を解いても、そのバウムクーヘン積分を表現する数学の言葉記述されないので、バウムクーヘン積分の概念を用いた解答が軽視されることもあるらしいです。
 バウムクーヘン積分をあらわす数学の言葉(タブー?)は、
「2重積分」です。

 2重積分は大学生以上では常識なので、それほど強いタブー(禁じ手)では無く、高校生が一旦2重積分を覚えてしまえば、それを高校の試験問題で使っても、また、大学の入学試験で使っても、合格点をもらえると思います。
 そのため、以下では、バウムクーヘン積分の計算を、大学生以上では常識になっている数学の言葉「2重積分」を使って計算する解答例(このように書けば合格点をもらえると思う)を示します。
 先に例示した東大の入試問題の前半部分に、2重積分を使って解答してみます。

(解答はじめ) 
  求める立体の断面を上図に示す。y=f(x)のグラフの0≦x≦1の部分とx軸とで囲まれた領域を、縦方向と横方向の細かい格子に分割する。その格子で分割された1単位を微小領域①とする。
 求める立体は、微小領域①をy軸のまわりに1回転して得られる細いドーナツ状の立体ΔVを集合させた立体である。
細いドーナツ状の立体ΔVの体積をΔVとすると、
 ΔV=(2π・x)(ΔxΔy)
である。
 微小領域①を断面に持つ細いドーナツ状の立体ΔVを縦方向と横方向につないで、その断面がy=f(x)のグラフの0≦x≦1の部分とx軸とで囲まれた領域を埋めるように集合させる。
その集合の体積Vは、
以下の式のように、細いドーナツ状の立体ΔVの体積を、 一定のxについてy方向に積分した上で、
更にx方向に積分する2重積分で計算できる。
  (解答おわり)

(補足)
 上記の式の1行目の式で、一番内側の積分∫(□)dyでの被積分関数(□)は、yで積分する場合には定数と扱える。なぜならば、その外側の積分がxによる積分なので、外側の積分を未だ開始していない時点では、変数xの値は変化しないで所定値に留まっているから、xは定数と扱ってyで積分している。そのため、被積分関数(□)=定数に、変数yの積分範囲の長さを掛け算した値を計算して2行目の式が導かれている。


リンク:
高校数学の目次

2012年7月8日日曜日

傘形積分と2重積分

大学への数学Ⅲ&Cの勉強
積分の応用

【解説】
 傘形積分により、軸の回りに平面図形を回転させた立体の体積を計算する高度な積分技術が教えられています。
 しかし、インターネットで検索すると、その手法で問題を解くと減点されると注意がされているようです。

 傘形積分を勉強することはほめられるべきことと考えますが、現実には、その知識が試験問題の解答ではマイナス?になってしまうようです。
 傘形積分に言及して問題を解いても、その傘形積分を表現する数学の言葉が教えられず。傘形積分の手法が数学の言葉で記述されないので、傘形積分の概念を用いた解答が理解されないというのがこのマイナス問題の原因のようです。
 傘形積分をあらわす数学の言葉は、高校生には教えないことにしているタブーの一種と考えられます。
 傘形積分を表現する数学の言葉(タブー?)は、「2重積分」です。

 2重積分は大学生以上では常識なので、それほど強いタブー(禁じ手)では無く、高校生が一旦2重積分を覚えてしまえば、それを高校の試験問題で使っても、また、大学の入学試験で使っても、合格点をもらえると思います。
 そのため、以下では、傘形積分の計算を、大学生以上では常識になっている数学の言葉「2重積分」を使って計算する解答例(このように書けば合格点をもらえると思う)を示します。

【例題】
 放物線y=xと直線y=xとで囲まれた図形を、直線y=xのまわりに1回転して得られる立体の体積を求めよ。

(解答はじめ) 
 求める立体の断面を上図に示す。放物線y=xと直線y=xとで囲まれた領域を、縦方向と横方向の細かい格子に分割する。その格子で分割された1単位を微小領域①とする。
 求める立体は、微小領域①を直線y=xのまわりに1回転して得られる細いドーナツ状の立体(下図)を集合させた立体である。
  微小領域①を断面に持つ細いドーナツ状の立体を縦方向と横方向につないで、その断面が放物線y=xと直線y=xとで囲まれた領域を埋めるように集合させる。その集合の体積Vは、以下の式のように縦方向に積分した結果を更に横方向に積分する式(2重積分の式)であらわせる。

(2重積分とは)
 2重積分とは、1回目の積分変数で計算した後に2回目の積分変数で計算する積分です。すなわち、1回目の積分計算の結果が2回目の積分計算で使われます(以下の最初の式のような形であらわされます)。2重積分では、1回目の積分で幅dxのy方向の細長い範囲を積分し、その積分範囲を2回目の積分で変数xの微小量のdxだけずらしつつ積分することで全領域を過不足無く網羅して積分するようにします。そのために、1回目の変数yによる積分計算では、2回目の積分変数xを一定値に保って計算します。いわば、以下の最初の式では、括弧の右側の外に付けたdxが、括弧の中の式をxを変えないように金縛りにかけています。

(積分の下限と上限については、高校生の間は、問題を難しくしないために、xもyも、小さい値から大きい値まで積分する場合だけを考える)
次に、括弧の中のyによる積分を 、r による積分に変換する。
その変換の際に、微小量dyをdrに変換する際に掛け算するべき係数を求める必要がある。
 その括弧中でのyによる積分では、xの値を一定の値に固定して積分計算している。そのため、rによる積分に変換する場合でも、xの値を一定に保ちつつ r で積分する。
 よって、以下で、xを一定に保つ条件を守ってyが微小量dy変化する場合の、xを一定に保つ条件を守って半径 r が変化する微小量drを計算する。
|r|=|ax+ay|
であるので、
|dr|=|(ax+a(y+dy))-(ax+ay)|
    = |a・dy|
になる。それゆえ、
|dy|=|dr/a
の関係がある。よって、
 |dy|は|dr/a
に置き換えて積分することができる。

高校生の間は、問題を難しくしないために、rについての積分についても、rが小さい値から大きい値まで積分する場合だけを考える。この積分では、yが増すとrが減るので、rの積分範囲は、yが最大になった場合のrの値=0からrまでrで積分する。)

さらに計算を続けます。
   
(この計算の意味の説明)
 (以下の説明文と図とは解答用紙に書かないでも良いです)
 ここまでの計算は、微小領域①を回転させた立体をy方向に積み重ねた立体の体積を計算しています。すなわち、以下のような形の薄い傘の体積を計算しています。
 (傘を軸を中心にバウムクーヘン積分すると、円板の体積になる)

 ここで、2重積分のパラメータ変換によって、
|dy|=|dr/a
という関係があり、yによる積分を r による積分に変える、積分のパラメータを変換する場合に出てくる係数(1/a)が得られます。この係数を用いて、厚さdxの傘の体積が、厚さ dx・|1/a|の円板に等しくなる、という関係があります。
このパラメータを変換する際に現れる係数(1/a)は傘形積分において非常に重要です。
 2重積分の計算において、この係数を間違えたら、計算手順の点数がもらえないと思います。傘形積分の概念だけを用いて計算する際にも、この係数を間違えたら、計算手順の点数がもらえないと思います。


さらに、計算を続けます。
 (解答おわり)

リンク:
高校数学の目次

2012年5月25日金曜日

行列の交換子の2乗は単位行列に比例



大学への数学Ⅲ&Cの勉強
行列と連立1次方程式

【解説】 
行列Awuukと行列Bwuukとは等しくない場合が多いですが、
行列Aの行列式が0では無い場合は、
-1km(Amuus)=Bks=(Bkmmu)A-1us
が成り立ちます。
このようにある行列CとDが、
行列式が0では無い行列Pを介して、
PC=DP
という関係がある場合は、
行列CとDとは同じ固有値を持ち、行列Pによって互いに変換されます。
PCP-1=D
-1DP=C
そのため、 行列Awuukと行列Bwuukとは同じ固有値を持ち、行列A-1kmによって互いに変換されます。

また 、行列Awuukと行列Bwuukは同じ固有値を持つので、固有値の和をあらわす行列の対角成分の和も同じになります。
つまり、
tr(AB)=tr(BA)
です。
この関係は、アインシュタインの縮約記法であらわすと簡単に証明できます。
tr(AB)=muumummutr(BA)
です。

更に、行列AやBの行列式が0になる場合でも、
以下のようにして、
行列AB≡Fと、BA≡Gの固有値が等しいといえます。
行列Fの固有値λを求める式は、
det(F-λE)=0
(F11-λ) (F22-λ)-2112=0
λ-tr(F)λ+det(F)=0
ここで、
tr(F)=tr(AB)=tr(BA)=tr(G)
det(F)=det(AB)=det(A)det(B)=det(BA)=det(G)
λ-tr(G)λ+det(G)=0
だから、行列FとGは、固有値を求める式が同じになるから固有値が同じです。

この関係があるため、
交換子(AB-BA)≡C対角成分の和は0になります。
tr(AB-BA)=tr(AB)-tr(BA)=0
tr(C)=0
このため、2行2列の行列の交換子(AB-BA)≡Cの場合は、
2行2列の行列のケイリー・ハミルトンの定理によって、 
wuuk+det(C)wk=tr(C)wk
の関係に、 tr(C)=0を代入すると、
wuuk+det(C)wkwk
wuuk=-det(C)wk
すなわち、 行列の交換子(AB-BA)≡Cを2乗した行列は単位行列に比例し、詳しくは-det(C)倍になります。

【問題】
2行2列の行列AとBが
AB-BA=A
をみたすとき、
wuuk=Owk
が成立することを示せ。

「入試数学伝説の良門100」 
の問題96の、308ページ「別解」

(解答はじめ)
tr(A)=tr(AB-BA)=tr(AB)-tr(BA)=0 (1)
2行2列のケイリー・ハミルトンの定理によって、
wuuk+det(A)Ewk=tr(A)Awk
(1)を代入する。
wuuk=-det(A)Ewk (2)
A(AB-BA)=A(A)
(AB-BA)A=(A)A
(AB-ABA)+(ABA-BA)=2A
B-BA=2A
(2)を代入する。
-det(A)B+det(A)B=2A
-det(A)(B-B)=2A
wk=2Awuuk
∴ Awuuk=Owk
(解答おわり)

(別解:地道に計算する方法)
行列の要素を添え字を付けてあらわすと、式がスラスラかける。


(解答はじめ)
(AB-BA)wk=Awk
wuuk-Bwuuk=Awk 

111111122111111221
1112211221  (1)
222112222221122222
2221122112  (2)
121112122211121222 (3)
212111222121112221 (4)
(1)と(2)より、
1112211221-A22  (5)
(5)を(3)に代入して22を消去する。
12111212221112+B1211 (6)
12(1-B2211)=2A1112  (7)
(5)を(4)に代入して22を消去する。
212111112121112221 (8)
21(1-1122)=2A1121 (9)
(7)×21+(9)×12
21122A11(A2112-A1221) (10)
(10)に(5)を代入する
2112-2A1111
2112-A1111  (11)

次に、Awuukの要素を順次に計算する。
1uu111111221
(11)を代入して
1uu1=0  (12)

2uu221122222
(11)と(5)を代入して
 2uu2=0  (13)

1uu211121222121122
(5)を代入して
1uu2=0  (14)

2uu121112221211122) 
(5)を代入して
2uu1=0  (15)

∴ (12)(13)(14)(15)から
wuukwk
(解答おわり)




リンク:
追加講:三角形の面積と行列式
高校数学の目次

2012年4月29日日曜日

2つの行列の2つの積から元の行列を逆算する



大学への数学Ⅲ&Cの勉強
行列と連立1次方程式

【解説】
(1)対角行列Tと行列の積が交換可能な行列は対角行列です。
(2)行列Aと行列Bの積ABとBAとは、同じ固有値を共有する行列です。

(3)また、行列式が0では無い行列で、その固有値の値が重解を持たない行列Aは、その固有値毎に固有ベクトルを計算して、
 その固有ベクトルを並べた行列Ptkを用いて以下の式で計算することで、対角化した行列Cukに変換できます。
-1ussttk=Cuk   ←Asttk=Psuuk
また、行列Pを用いてそのようにお互いに変換できる行列同士は、同じ固有値を持ちます。
これらの原理を利用して、以下の問題を解くことができます。

【問題】
行列Aと行列Bがあるとき、
行列の積AB=CとBA=Dとが与えられた場合に、元の行列AとBを求める問題を考えます。
この問題では、行列は全て2行2列の行列であるものとします。

(条件1)この行列AとBは、その行列式が0では無く逆行列が存在するものとします。

 この行列の積AB=CとBA=Dは以下のように、行列A(あるいは行列B)を用いて互いに変換できます。
行列AB=Cと行列BA=Dは、行列Aを用いて互いに変換できるので、同じ固有値を持ちます。
 行列AB=Cと行列BA=Dは固有値が共通であるので、この行列AB=Cと行列BA=Dのバラエティを記述するパラメータの数は、行列Aの4つのパラメータと行列Bの4つのパラメータの合計の8よりも2つパラメータが減って、6つのパラメータでCとDとのあらゆる場合が記述できます。
 パラメータが減ってしまっているので、行列CとDだけでは情報が不足しているので、それだけでは、行列AとBを完全に再現することはできません。行列CとDのみからでは、行列AとBがパラメータの自由度2で不定になります。
 以下では、その不定性があっても良いものとして、行列AとBを可能な限り逆算してみます。

以下の行列式を計算することで、行列AB=Cと行列BA=Dとが共有する固有値と、その固有値を持つ対角行列Tを計算することができます。
そして、以下のように、その固有値を持つ対角行列Tを行列Cに変換する行列Pを計算、対角行列Tを行列Dに変換する行列Qを計算します。
以下で、式4から行列Aを与える式6を計算し、式5から行列Aを与える式7を計算し、式6と式7を連立して行列Aを消去する計算をします。
ここで、行列Q-1BP=Vとします。
この行列Vと対角行列Tとは、その積が交換可能な関係があります。
対角行列Tと積が交換可能な行列Vは対角行列になります。
 上式8のように、行列Bが対角行列Vを用いてあらわせます。

同様にして、 式4から行列Bを与える式9を計算し、式5から行列Bを与える式10を計算し、式9と式10を連立して行列Bを消去する計算をします。
ここで、行列P-1AQ=Wとします。
この行列Wと対角行列Tとは、その積が交換可能な関係があります。
対角行列Tと積が交換可能な行列Wは対角行列になります。
そして、以下の式11のように、行列Aが対角行列Wを用いてあらわせます。
 この式8と式11を用いて行列の積AB=Cを計算すると、以下の関係式12を得ます。
すなわち、式12のように、対角行列Tは対角行列WとVの積です。また、対角行列同士の積は交換可能です。
ここで、行列の積BA=Dを計算すると、式5の関係が満足されています。
 対角行列VとWには、それ以上の制限条件がありません。
すなわち、任意の対角行列Vを自由に定めて、式12を満足するように対角行列Wを定めれば、それだけで、AB=Cを与える式4と、BA=Dを与える式5が満足されます。

(解答)任意な対角行列Vと、式12を満足する対角行列Wを用いて、式11で行列Aが与えられ、式8で行列Bが与えられる。

【検算】
 任意の対角行列Vを用いて行列AとBが与えられるということが、本当に間違いなく成り立っているかを確かめるために、以下の検算をします。

検算のために、行列AとBが以下の場合を考える。
 この場合に、行列AB=CとBA=Dの固有値を以下の様に計算すると、行列CとDの固有値が同じであることが確認できます。
これで対角行列Tが定まりました。
次に、行列AB=Cを対角行列Tに変換する行列Pを計算します。
次に、行列BA=Dを対角行列Tに変換する行列Qを計算します。
次に、対角行列WとVを自由に変えて(ただし式12を満足させて)、それにより定まるAとBが、どれも同じ行列AB=CとBA=Dを与えるかどうかを確認します。

(第1の場合)
先ず、対角行列WとVを以下のように定めて行列AとBを計算します。
 この行列AとBは、元の行列AとBとは異なる。
次に、この行列AとBの積AB=CとBA=Dを計算する。
 行列AB=CとBA=Dは元どおりになった。

(第2の場合)
次に、対角行列WとVを以下のように定めて行列AとBを計算します。
 この行列AとBは元の行列と同じ行列が得られた。

(第3の場合)
次に、対角行列WとVを以下のように定めて行列AとBを計算します。
 この行列AとBは、元の行列AとBとは異なる。
次に、この行列AとBの積AB=CとBA=Dを計算する。
 行列AB=CとBA=Dは元どおりになった。

以上で、両者の積が対角行列Tになる任意の対角行列VとWを設定することで、異なる行列AとBの組が得られ、そのいずれの行列AとBの組も、同じ行列の積AB=CとBA=Dを与えることが確かめられた。